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Inverse problems in wave propagation
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Imaging setup
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An signal is emitted from xs at the array of N transducers, it illuminates the scatterers in the image

window (IW). The point scatterers are at yj , and now they can be viewed as the sources of the

signal. They send the scattered signal back to the array. There are K pixels in the IW. The number

of scatters is M < N , and N < K, typically. The map Aρ⇒ b in the paraxial approximation is (up

to a constant) the (partial) Fourier transform.



Imaging of sparse scenes
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Left: the true image. I show 2-dimensional images for simplicity. Right: the recovered solution

vector is plotted with red stars and the true solution vector of Aρ = b with green circles.



Noise, l1 versus l2 regularization

True ρ l1 solution `2 solution
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l1-methods are unstable to noise., l2-methods loose resolution.



l1-regularization and Lasso

Noiseless. Want to solve a sparsity promoting optimization

ρ = arg min ‖ρ̃‖0, subject to Aρ̃ = b

where ‖ρ‖0 = {#ρi 6= 0}. It is expensive, so we solve

ρ = arg min ‖ρ̃‖1, subject to Aρ̃ = b

where ‖ρ‖1 =
∑

i |ρi|.
Noisy case, Lasso. R. Tibshirani ’96, Chen & D.Donoho ’94, F.Santosa &
W.Symes ’86

ρ = arg min

(
λ‖ρ̃‖1 +

‖Aρ̃− b‖2
2

2

)
where ‖ρ‖2 =

√∑
i |ρi|2 and λ is a tuning parameter.



Tuning λ in Lasso
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LASSO results with λ = 1, λ = 0.5 (optimal) and λ = 0.1.



l1 & LASSO
LASSO: finds a sparse approximate solution Aρ ≈ b if
the tuning parameter λ is chosen correctly.

l1: finds a sparse solution only if noise e = 0. No tuning parameters.
If e is small, the sparse approximate solution can be found by
thresholding. Thresholding has to be tuned.

We propose to solve

(ρτ , η) = arg min (τ‖ρ‖1 + ‖η‖1) , subject to Aρ + Cη = b

where C is the noise collector matrix and τ is the weight of the noise
collector, and b = b0 + e.
We can prove ρ ≈ ρτ and Cη ≈ e if τ is chosen correctly.
We can choose τ = O(

√
lnN) for any level of noise, before de-noising.



no NC with NC, but no weight: τ = 1
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The top row - the images, the bottom row - the solution vector with red
stars and the true solution vector with green circles.



with NC and weight `2 on the support
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The top row - the images, the bottom row - the solution vector with red
stars and the true solution vector with green circles.



no NC with NC

-20 -10 0 10 20

range in 
0

-20

-15

-10

-5

0

5

10

15

20

c
ro

s
s
-r

a
n
g
e
 i
n
 

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 -10 0 10 20

range in 
0

-20

-15

-10

-5

0

5

10

15

20

c
ro

s
s
-r

a
n
g
e
 i
n
 

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

1.2

c

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

1.2

2



Design of the Noise Collector

(i) Columns of NC should be sufficiently orthogonal to the columns of A,
so it does not absorb signals with meaningful information.

(ii) Columns of NC should be uniformly distributed on the unit sphere
SN−1 so that we could approximate well a typical noise vector.

(iii) The number of columns of NC should grow slower than exponential
with N , otherwise the method is impractical.

(iv) Deterministic approach. If we fill up C imposing

|~ai · ~cj| <
α√
N
∀i, j , and |~ci · ~cj| <

α√
N
∀i 6= j, (1)

then the Kabatjanskii-Levenstein inequality implies that the number
Σ of columns in C grows at most polynomially: Nα 6 Σ 6 Nα2

.



Probabilistic approach to design of NC
If the columns of C are drawn at random independently. then the dot
product of any two random unit vectors is still typically of order 1/

√
N .

We have an asymptotically negligible event that our noise collector is bad
The decoherence constraint is weakened by a logarithmic factor.

Lemma: Choose β > 1, and pick Σ = Nβ vectors ~ci at random and
independently on SN−1. Then, for any κ > 0 there are constants c0(κ, β)
and α > 1/2, such that (i)

|~ai · ~cj| < c0

√
lnN/

√
N for all i, j, (2)

and (ii) for any ~e ∈ SN−1 there exists at least one ~cj, so

|~e · ~cj| > α/
√
N, (3)

with large probability 1 − 1/Nκ. In addition the condition number of
[A|C] is O(1).



False Discovery Rate is zero

Theorem 1: (No phantom signal) Suppose there is no signal: ρ = 0 and
e/‖e‖l2 is uniformly distributed on the unit sphere. For any κ > 0 we
can construct the noise collector and choose weight τ so that ρτ = 0 with
probability 1− 1/Nκ.

Theorem 2: Let ρ be an M -sparse solution of Aρ = b0. If the columns of
A are decoherent: |ai·aj| 6 1

3M
, then supp(ρτ) ⊆ supp(ρ) with probability

1− 1/Nκ.



Supports of ρ and ρτ agree

Theorem 3: Suppose r is the magnitude of smallest non-zero entry of ρ.
If ‖e‖l2/‖b0‖l2 6 c2

√
lnN , c2 = c2(κ, β, r,M), then supp(ρτ) = supp(ρ),

with probability 1− 1/Nκ.

Theorem 4: (Exact Recovery): If there is no noise e = 0. Then ρτ = ρ
with probability 1− 1/Nκ.



Failure to recover

NC Lasso with optimal λ
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Image Window and Noise Collector

NC and IW IW only
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Coefficients of the solution, 0dB, N = 625, K = 1000, Σ = 10000.



GeLMA with Fast Noise Collector

Require: Set ρ = 0, z = 0. η = 0.
Pick β = β(A,C), and τ = .8

√
lnN .

repeat
r = b− Aρ− Cη
z ⇐ z + βr
ρ⇐ Sτβ(ρ + βA∗(z + r))
η ⇐ Sβ(η + βC∗(z + r))

until Convergence

Calibrate τ so that FDR is zero when b = e (only noise).
”No phantom signal” criterion.

Fast Noise Collector C is several random circular matrices. Then it is
cheap to store C, and we can use FFT for matrix-vector multiplication.

The soft shrinkage-thresholding operator

Sτ(yi) = sign(yi) max{0, |yi| − τ}.



Geometric interpretation of ~z
~ai · ~z = τ sign(ρi), if ρi 6= 0, and |~ai · ~z| 6 τ if ρi = 0.

Assume both ~ai and −~ai are columns of A, and all ρi > 0 then

HA = {x ∈ RN : x =
∑
i

αi~ai,
∑
i

αi 6 1, αi > 0}

Suppose Λ is the support of ρ, typically (for non-sparse ρ) |Λ| = N .
Then, the simplex{

~x ∈ RN

∣∣∣∣∣~x =
∑
i∈Λ

αi~ai,
∑
i∈Λ

αi = 1, αi > 0

}

has the unique normal vector ~n, which is collinear to ~z because

1 = ~z · ~ai =
~z ·~b
‖~b‖A

, ∀i ∈ Λ, and ~z · ~aj < 1,∀j 6∈ Λ. (4)



Geometric interpretation of z

e
z

If A is the identity matrix then Φ(e) = (sign(e1), . . . , sign(eN)).



Duality

Given A we have HA define ~z = ΦA(~b). Let

Z = { all ~z = ΦA(~e) for some ~e ∈ SN−1}

Then
max
z∈Z

z · b = min(‖ρ‖1, subject to Aρ = b),

and
ΦA(~b) = arg max

z∈Z
z · b.



Proof of Theorem 1

Solve

(ρτ , η) = arg min (τ‖ρ‖1 + ‖η‖1) , subject to Aρ + Cη = b

Theorem 1:(No phantom signal) Suppose there is no signal: ρ = 0 and
e/‖e‖l2 is uniformly distributed on the unit sphere. For any κ > 0 we
can construct the noise collector and choose weight τ so that ρτ = 0 with
probability 1− 1/Nκ.
Proof: Instead of ΦA, consider ΦC : e→ z, where z is dual certificate

of optimality of η. We want to show Φ[τA|C] : e → z. It means that z is
the also dual certificate of optimality of (0, η), i.e.

|~z · ~aj| < τ, ∀j



Map ΦC : e→ z

F [



Random vectors on SN−1

Everything is rotation invariant in ΦC : e → z. Thus n = z/‖z‖2 is
uniformly distributed on SN−1.
‖z‖ = O(

√
N), because l1-balls are probabilistically l2-small.

Coordinates of s uniformly distributed vector on SN−1 have i.i.d. Gaussian
distribution N(0, 1/

√
N). The event |~z ·~aj| < τ, ∀j does not happen with

probability

P
(

max
j
|~z · ~aj| > τ

)
6 NβP

(
|~n · ~a1| > τ/

√
N
)

6 2Nβe−cτ
2

6 1/Nκ, if τ = O(
√

lnN).


